Insulin receptor substrate 1 is a substrate of the Pim protein kinases
نویسندگان
چکیده
The Pim family of serine/threonine protein kinases (Pim 1, 2, and 3) contribute to cellular transformation by regulating glucose metabolism, protein synthesis, and mitochondrial oxidative phosphorylation. Drugs targeting the Pim protein kinases are being tested in phase I/II clinical trials for the treatment of hematopoietic malignancies. The goal of these studies was to identify Pim substrate(s) that could help define the pathway regulated by these enzymes and potentially serve as a biomarker of Pim activity. To identify novel substrates, bioinformatics analysis was carried out to identify proteins containing a consensus Pim phosphorylation site. This analysis identified the insulin receptor substrate 1 and 2 (IRS1/2) as potential Pim substrates. Experiments were carried out in tissue culture, animals, and human samples from phase I trials to validate this observation and define the biologic readout of this phosphorylation. Our study demonstrates in both malignant and normal cells using either genetic or pharmacological inhibition of the Pim kinases or overexpression of this family of enzymes that human IRS1S1101 and IRS2S1149 are Pim substrates. In xenograft tumor experiments and in a human phase I clinical trial, a pan-Pim inhibitor administered in vivo to animals or humans decreased IRS1S1101 phosphorylation in tumor tissues. This phosphorylation was shown to have effects on the half-life of the IRS family of proteins, suggesting a role in insulin or IGF signaling. These results demonstrate that IRS1S1101 is a novel substrate for the Pim kinases and provide a novel marker for evaluation of Pim inhibitor therapy.
منابع مشابه
A carboxy-terminal truncated insulin receptor substrate-1 dominant negative protein reverses the human hepatocellular carcinoma malignant phenotype.
Insulin receptor substrate-1 (IRS-1), a substrate of various receptor tyrosine kinases transmits mitogenic signals initiated by extracellular ligands. This protein is involved in normal hepatocyte growth and has been found to be overexpressed in human hepatocellular carcinoma. Expression of a carboxy-terminal truncated IRS-1 molecule containing the pleckstrin homology and phosphotyrosine-bindin...
متن کاملPim-1 Kinase Phosphorylates and Stabilizes 130 kDa FLT3 and Promotes Aberrant STAT5 Signaling in Acute Myeloid Leukemia with FLT3 Internal Tandem Duplication
The type III receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) is expressed on both normal hematopoietic stem cells and acute myeloid leukemia (AML) cells and regulates their proliferation. Internal tandem duplication (ITD) mutation of FLT3 is present in a third of AML cases, results in constitutive activation and aberrant signaling of FLT3, and is associated with adverse treatment out...
متن کاملThe Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis.
The Drosophila insulin receptor (DIR) contains a 368-amino-acid COOH-terminal extension that contains several tyrosine phosphorylation sites in YXXM motifs. This extension is absent from the human insulin receptor but resembles a region in insulin receptor substrate (IRS) proteins which binds to the phosphatidylinositol (PI) 3-kinase and mediates mitogenesis. The function of a chimeric DIR cont...
متن کاملModulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase.
Increased serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been observed in several systems to correlate with a decreased ability of the insulin receptor to tyrosine-phosphorylate this endogenous substrate and to inhibit its subsequent association with phosphatidylinositol 3-kinase. In the present studies we have examined the potential role of the mitogen-activated protein (MA...
متن کاملThe Role of the Cullin-5 E3 Ubiquitin Ligase in the Regulation of Insulin Receptor Substrate-1
Background. SOCS proteins are known to negatively regulate insulin signaling by inhibiting insulin receptor substrate-1 (IRS1). IRS1 has been reported to be a substrate for ubiquitin-dependent proteasomal degradation. Given that SOCS proteins can function as substrate receptor subunits of Cullin-5 E3 ubiquitin ligases, we examined whether Cullin-5 dependent ubiquitination is involved in the reg...
متن کامل